
Energy-Efficient Tree-Based Indexing Schemes
for Information Retrieval

in Wireless Data Broadcast�

Jiaofei Zhong1, Weili Wu1, Yan Shi1, and Xiaofeng Gao2

1 The University of Texas at Dallas, Department of Computer Science,
800 West Campbell Road, Richardson, TX 75080-3021

{fayzhong,weiliwu,yanshi}@utdallas.edu
2 Georgia Gwinnett College, 1000 University Center Lane,

Lawrenceville, GA 30043
xgao@ggc.edu

Abstract. Mobile computing can be equipped with wireless devices to
allow users retrieving information from anywhere at anytime. Recently,
wireless data broadcast becomes a popular data dissemination method,
especially for broadcasting public information to a large number of mo-
bile subscribers at the same time. Access Latency and Tuning Time are
two main criteria to evaluate the performance of a data broadcast sys-
tem. Indexing can dramatically reduce tuning time by guiding clients to
turn into doze mode while waiting for the data to arrive. B+-Tree Dis-
tributed Index Scheme (BTD) is a popular index scheme for wireless data
broadcast, which has been extended by many research works. Among tra-
ditional index structures, alphabetic Huffman tree is another important
tree-based index technique with the advantage of taking data’s access
frequency into consideration. In this paper, we are trying to answer one
question: can alphabetic Huffman tree replace B+-tree and provide better
performance? To answer this question, we propose a novel Huffman-Tree
based Distributed Index Scheme (HTD) and compare its performance
with BTD based on a uniform communication environment. The perfor-
mances of HTD and BTD are analyzed both theoretically and empiri-
cally. With the analysis result, we conclude that HTD outperforms BTD
and can replace BTD in most existing wireless data broadcast system.

1 Introduction

Wireless Data Broadcast has attracted great attention recently in wireless com-
puting area because of its scalability and flexibility to broadcast public informa-
tion to a large number of mobile subscribers. In a typical data broadcast system,
base stations broadcast a set of data periodically within its region. Mobile clients
within the region could tune into broadcast channel, search for the data it needs,
wait till target data items are broadcasted and download them. Considering that
mobile devices has limited battery power and restricted lifetime, access latency
and tuning time becomes two main criteria to evaluate the performance of a
data broadcast system. According to the architectural enhancements, each mo-
bile device has two modes: active mode and doze mode. The energy consumed
� This work is supported by NSF grant CCF-0829993 and CCF-0514796.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 335–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

336 J. Zhong et al.

in active mode can be up to 100 times higher than that in doze mode. Based on
this, access latency is defined to denote the whole time interval from the moment
when a client initiates a query, till the moment it finishes downloading the data
item, which evaluates the query time efficiency of a system; while tuning time
is defined as the sum of time when a client keeps “active” during the process,
which evaluates the energy efficiency of the system.

Researchers apply index technologies to reduce tuning time for a data broad-
cast system. An index is a specific data structure storing the location informa-
tion of data items. Due to the nature of data broadcast scheme, indices in data
broadcast system store the “time offset” of target data items. Once a client gets
this offset, it is aware of the waiting time for the target data item to arrive on
the broadcast channel. The client turns into doze mode to save some energy and
tunes back to the broadcast channel right before the data item appears. Different
index technologies have different searching efficiency. If we insert indices between
data items, then the whole size of a program will increase, resulting a longer ac-
cess latency. Therefore, discussing about an index technology, researchers will
always consider the balance between tuning time and access latency.

B+-Tree Distributed Index Scheme (BTD) is a popular index scheme for wire-
less data broadcast. Many other research works [3,4,5,18] have extended BTD
with respect to different system configurations. Since the idea of distributed
index can be generally adopted on tree-based search index methods, we natu-
rally wonder what impact the choice of different search tree structures will have
on the performance of broadcast system. Alphabetic Huffman tree is another
primary tree-based index techniques. Compared with B+-tree, it can not only
guide searching of target data item, but also take into consideration the access
frequencies of different data items. The higher access frequency a data item has,
the closer it is to the root in an alphabetic Huffman tree. This can be a very
beneficial feature for wireless data broadcast because it may reduce the time
needed to search for more frequently requested data items and consequently re-
duce the average access latency. The purpose of this paper is to construct an
Alphabetical Huffman-tree based Distributed Index Scheme (HTD) and evaluate
the performance of distributed index schemes BTD and HTD.

For fair comparison, we build up a uniform environment with same commu-
nication model and data set. We assume each data item can have different size
and different access probability, such that our mathematical model can be more
practical and more accurate. Since system performance in skew broadcast heav-
ily relies on data schedule algorithm/design, and we just want to compare the
performance of indices, flat broadcast is adopted in this paper. We choose single
channel data broadcast model to eliminate the impact of index and data allo-
cation algorithms on the performances so that the difference in performances
can be purely from different tree-based index structures. In order to perform
the evaluation, we first develop a novel Huffman-Tree based Distributed index
scheme (HTD). We also adjust the packet design of BTD to fit our communica-
tion model. Based on the uniform system setup, a detailed theoretical analysis
is performed on the expected access latency and tuning time of BTD and HTD.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 337

Finally, we simulate the broadcast environment and provide mass numerical sim-
ulation. The theoretical and empirical analysis proves the superiority of Alpha-
betic Huffman tree based distributed index. We are the first work to construct
a Huffman-tree based Distributed Index Scheme for wireless data broadcast
problem.

The rest of this paper is organized as follows: in Section 2 we study previous
literatures for wireless data broadcast problem, including various index tech-
nologies in different communication environments. In section 3 we illustrate our
system model, and discuss broadcast environment, data type, and data schedule
in detail. In Section 4 and 5 we construct and evaluate distributed index and
Huffman tree correspondingly. Next, in Section 6 we illuminate the process of
simulation and discuss index performance based on our numerical experiments.
Finally, Section 7 gives conclusion and the plan of our next stage work.

2 Related Works

In wireless data broadcast area, the main research topics always focus on how to
design index structures and how to allocate data on channels. Their purpose is to
reduce access latency and tuning time, in order to improve the energy efficiency
of the system. Many research works deal with data scheduling problem so as
to decrease access latency. Acharya et al. [1] proposed “broadcast disk”, which
allocates data with similar access frequencies onto different disks and broadcast
data of these disks repeatedly according to their frequencies, in order to cope
with nonuniform access distribution. Vaidya et al. [16] discussed optimization
issue with respect to the average access latency when data access distribution is
nonuniform. Vlajic et al. [17] presented an optimized data broadcast strategy in
hierarchical cellular organization system. However, none of these works imple-
ments indexing technique. Moreover, without doze mode, the tuning time is as
long as access latency, which leads to high power consumption of mobile devices.

There are also many works converting traditional disk-based indexing ap-
proaches to air indexing by converting physical address into time offset. One pa-
per [12] discussed a signature based approach for information filtering in wireless
data broadcast. Another work by Xu et al. [19] gave an idea of exponential index
that shares links in different search trees and allows clients to start searching at
any index node. However, their approach may not perform well under nonuni-
form access probabilities. Yao et al. [22] proposed MHash to facilitate skewed
data access probabilities and reduce access latency. Imielinski et al. [8] presented
the flexible index and hash based index. Furthermore, they customized B+-tree
index and proposed (1, m) index as well as distributed index (BTD) [9]. BTD
was extended by many other researchers to fit different system requirements.
Hu et al. [5] designed a hybrid index scheme combining BTD and signature-
based index. [18] proposed an index allocation method named TMBT for multi-
channel data broadcast, which creates a virtual BTD for each data channel and

338 J. Zhong et al.

multiplexes them on the index channel. Hsu et al. [4] modified BTD to deal
with data with nonuniform access frequencies. In [3], Gao et al. built a complete
multi-channel broadcast system to broadcast a data set with nonuniform access
probability and data sizes, which used BTD as their index scheme.

Huffman-tree is a skewed index tree which takes into account the access prob-
ability of each data item, that the popular data has a shorter path from the
root of the tree, thus it minimizes the average tuning time [2,14]. In [2], the
proposed algorithms for constructing the skewed Huffman tree have a problem
that the clients may fail to find the desired data item by traversing that Huffman
tree. In [14], it discussed the construction of Huffman tree, which is similar to
that of Huffman code, but the constructed Huffman tree has the same problem.
There is another kind of Huffman tree, Alphabetic Huffman tree, proposed in [6],
which serves as a binary search tree. It is further extended to k-ary search tree
in [14], so that a tree node will fit in a wireless packet of any size by adjusting
the fanout of the tree. However, all the above works discussed Huffman-tree on
multi-channel environment. When it comes to the multi-channel data broadcast,
how to allocate index and data will produce heavy impact on the performance
of each index technique. A certain allocation method could be helpful to specific
index structure, but at the same time it might reduce the efficiency of another
index method. In this paper, we aim at comparing two commonly used index
approaches under the same conditions, as well as minimizing both average access
latency and average tuning time, so we adopt single channel data broadcast envi-
ronment to avoid all kinds of influences introduced by a multiplicity of different
multi-channel allocation methods. Unfortunately, there is no existing research
applying alphabetic Huffman-tree onto single channel data broadcast systems.

3 System Symbols and Bucket Design

Now we present the system model of a wireless data broadcast communication
environment for future comparison of tree-based distributed index schemes.

Table 1. Symbol Description

Sym Description Sym Description
D Data set D = {d1, · · · , dt} Di Data block on Bi

t Number of data items Pi Probability for block Bi

P Probability set P = {p1, · · · , pt} �i The ith subtree at level l+1 on T
S Length set S = {s1, · · · , st} Vi Distributed path for �i

T An index tree ui Length of index on Bi with average u
L Level of T vi Length of Vi on Bi with average v
k Maximum branch number for T xi Length of Di on Bi with average x
l Threshold to cut T R Total number of �i on T
B One broadcast sequence on a channel Bj

i The jth index at ith level of T

Bi The ith block on B dj
i The jth bucket of data item di

| · | Cardinality of one set ‖ · ‖ Length measured in data bucket unit

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 339

3.1 System Symbols

The Base Station broadcasts data set D on a single wireless broadcast channel,
where the total number of data items is t, and D = {d1, d2, · · · , dt}. Without loss
of generality, assume data items in D are arranged in a consecutively increasing
order of their primary key values. The access probability for each data item di is
pi, where

∑t
i=1 pi = 1, and P indicates the probability set of D. Data items may

have different sizes due to various applications, Let si denote the size of di, and
S denote the length set of D. Fig. 1 is an example data set with 16 data items,
which will be continuously used as our data sample throughout the paper.

In order to reduce tuning time for mobile clients, some tree-based index strate-
gies, for instance the B+-tree Index scheme, are applied to the wireless data
broadcasting system. We use T to denote the index tree for tree-based index
strategies, and define k as the maximum number of branches for each node in
T . L is the depth or height of T . In distributed index [9], T is “cut” at the lth

level. Bj
i denotes the jth index at ith level of T . Sec. 4 and 5 will give detailed

design of two index strategies. Table 1 lists most of the symbols used in this
paper. Some symbols will be introduced in later sections.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.08 0.01 0.04 0.03 0.06 0.10 0.05 0.07 0.10 0.06 0.02 0.04 0.05 0.05 0.07

Data Key

Probability

16

0.16

4 2 3 1 4 2 4 2 3 1 1 3 4 2 1Data Size 3

Fig. 1. An Example of Data Set

3.2 Bucket and Pointer Design

A bucket is the minimum logical unit for data transmission in wireless data
broadcast systems. Data buckets and index buckets have different structures
and sizes. An index bucket contains a complete index node; while a data item
can take several data buckets. Data item size si is measured by the number of
data buckets it occupies. A bucket has two segments: head and payload. For
both index bucket and data bucket, its head has the same elements:

bId: id of a bucket, in the format of (i, j, n). For a tree-based distributed
index bucket, it indicates the nth recurrence of index Bj

i . For a data
bucket, it denotes the jth bucket of di (denoted as dj

i) with n = si.
bType: the type of this bucket. E.g., a tree-based distributed index strategy

has three types of buckets, i.e. control index, search index and data.
bLength: the total length or size of this bucket.
bOffset: the offset to the next nearest control index.

The payload segments of a data bucket and an index bucket are different. In
a data bucket, the payload stores data. A data item may take up several data
buckets of same lengths. On the other hand, in an index bucket, the payload
stores index information, such as pointers, which indicate the time offsets to
some other index buckets. A pointer contains the following elements:

340 J. Zhong et al.

1
1B

2
2B1

2B

H ead Pointer_B 2
11

2B Poin ter_B 2
12

2B

bId bType bLength pKey pO ffsetbO ffset

Bucket_ 1
1BIndex_ 1

1B

Fig. 2. An Example of Index Bucket Structure

pKey: the bId of the bucket it points to.
pOffset: time offset from current moment to the moment target bucket starts

to broadcast.

For tree-based index strategies, an index bucket may contain several pointers,
each pointing to one of its children. The number of pointers depends on the
design of the index tree. Fig. 2 is an example index bucket storing an index
node B1

1 of a binary index tree, which has a head segment (the block in shadow)
to “label” index B1

1 itself, and a payload segment (two white blocks) to store
the pointers of B1

1 . Since B1
1 has two children B1

2 , and B2
2 , its payload segment

should have two pointers, recording the location of B1
2 , and B2

2 .

4 B+-Tree Based Distributed Index

We adopt B+-Tree based distributed index strategy BTD introduced in [9]. To
fit our model, we reformulate BTD with the bucket design in Sec. 3.2.

In BTD, B+-Tree index is streamed on broadcast channel in depth-first man-
ner, and it is “cut” at level l. Nodes from level 1 to l are replicated part, while
others are non-replicated part which can be viewed as a number of subtrees
rooted at the indices at level l + 1. Each index in the replicated part is a control
index and has a control table to specify the search ranges of different subtrees.

16

Replicated Part
Non-Replicated

Part

k = 2
L= 4
l = 2

3
4B 4

4B 5
4B

1
1B

2
2B1

2B

4
3B2

3B 3
3B1

3B

1
4B 2

4B 6
4B 7

4B 8
4B

1514131211109873 4 5 61 2

Fig. 3. An Example of B+-tree cut at the 2nd level

Fig. 3 is an example of a full binary B+-Tree based distributed index structure
with k = 2, L = 4, and l = 2. There are 16 data items in the data set D,
represented by grey blocks at the bottom. Each index node Bj

i means the jth

index node on the ith level of the tree. All the nodes above (including) the 2nd

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 341

Non, Non

1[1]
1B 1[1]

2B 1Δ

4,(212)

4, begin

1[2]
2B 2Δ

8, (112)

8, begin

1[2]
1B 2[1]

2B 3Δ

12,(222)

12, begin

2[2]
2B 4Δ

Non, Non

1
3B 1

4B1Δ 2
4B 2

3B 3
4B2Δ 4

4B 3
3B 5

4B3Δ 6
4B 4

3B 7
4B4Δ 8

4B

Control
Table

Search
Index

Broadcast
Sequence 1D 2D 3D 4D

1DData
Block 2D 3D 4D 161514139 10 11 125 6 7 81 2 3 4

1[2]
2B 1[2]

1B 2[2]
2B

Fig. 4. An Example of B with Control Tables

level of the tree are control indices of the replicated part, while the other nodes
below are search indices of the non-replicated part.

We traverse T according to distributed rules described in [9], and then append
control table for each control index. During traversing process, data buckets and
index buckets are interleaved on the same broadcast channel. B is a complete
program streamed on a broadcast channel, including both index buckets and
data buckets. Fig. 4 is an example of B with respect to the aforementioned index
tree example in Fig. 3. B

j[1]
i , · · · , B

j[k]
i represent k appearances of Bj

i , where k
is the same as branch number k in T .

Note that index bucket and data bucket may have different sizes. A data
bucket is usually measured by KB. Each data bucket has size 1KB. However,
the size of an index bucket is determined by the information stored in an index
bucket. Therefore, we let |B| denote the cardinality of set B, measured by the
number of bucket, and ‖B‖ denote the total length of set B, measured in the
unit of one data bucket (KB). An index bucket may have different size from a
data bucket, so we define “r” to indicate the ratio of data bucket size to index
bucket size, i.e. r = data bucket size/index bucket size. For instance, using the
data set in Fig. 1 as an example, in Fig. 4 we have |B| = 34, and ‖B‖ = 18/r +
40, since there are totally 18 indices, 6 of which are control indices and the rest
12 are search indices. Additionally, control tables are used to specify the ranges
of subtrees. For example, in the control table of B

1[2]
2 , the first entry [4,begin]

means that if the client is looking for a data item with key value ≤ 4, it needs
to wait till the beginning of next broadcast cycle. The second entry [8, B

1[2]
1]

implies if the client is looking for a data item with key value > 8, it should
wait till B

1[2]
1 arrives. This control table indicates that the subtree immediately

following it can only guide to data with key values in the range (4,8].
In BTD, index and data are interleaved on the same broadcast channel.

As in Fig. 4, �i denotes subtree in the non-replicated part, and is consist of
search indices. For instance, �2 is the subtree rooted at B2

3 , with two chil-
dren B3

4 and B4
4 . Di indicates the data buckets that �i guides to, which is

streamed sequentially by their key values. dft(�i) is the depth-first traversal
of �i. For example, dft(�2) = B2

3 , B3
4 , B4

4 . path(Bj
i) is a path from root

B1
1 to node Bj

i (excluding the endpoint Bj
i), and Vi is a distributed path be-

fore each �i. For example, from Fig. 3 we can see that the distributed path for
B3

3 should be V3 = {B1
1 , B2

2}. After this, the broadcast sequence is defined as
B = {V1,dft(�1), D1, V2,dft(�2),D2,· · ·,VR,dft(�R),DR}.

342 J. Zhong et al.

4.1 Performance Analysis of B+-Tree Distributed Index

In this section, we analyze the performance of B+-Tree based distributed index
with respect to the expectation of access latency and tuning time.

Let’s consider access latency first. Let R denote the number of subtrees after
we cut T. The whole broadcast cycle is divided into B1, · · · , BR blocks, where
Bi = {Vi,dft(�i), Di}, for 1 ≤ i ≤ R. Pi represents the access probability for
block Bi, which can be derived by summing up the probability of all data buckets
that belong to data block Di of Bi, i.e. Pi =

∑
j∈Di

pj , for i = 1, · · · , R. Let
v denote the average length of Vi, u the average length of Vi + �i, and x the
average length of Di. Note that u, v, and x are measured by data bucket(KB),
while ui, vi, and xi denote corresponding lengths for specific block Bi. Hence,
we have u = (‖B‖ − ‖D‖)/R, v =

∑R
i=1 ‖Vi‖/R, and x = ‖D‖R.

1V 1Δ 1D V i iΔ 1V i + 1i +Δ

Tune In

1V i w+ − 1i w+ −Δ V i w+ i w+Δ

(w -1) b locks G et R esult

2D 1D i + 1D i w+ − D i w+

1B iB 1i +B 1i w+ −B i w+B

Fig. 5. An Example of a Client Searching for Data

Theorem 1. If B+-tree based distributed index and data are interleaved on one
broadcast channel, then the average access latency is

E(AL) =
1
R

·
R∑

i=1

(R−2∑

w=1

((
1
2

+ w)u + wx) · P(i+w)%R + (u − v

2
+

x

2
) · v

u + x
· Pi

+(
u − v

2
+ w(u + x)) · Pi · u − v + x

u + x

)
. (1)

Proof. Assume that a client would like to retrieve data item dj . It first tunes
into the broadcast channel at block Bi, and then waits for another w blocks to
reach the block which contains the required datum dj at Bi+w. Next, the client
waits for the first data bucket of dj to come and begins to download, until it gets
all the data buckets of dj . Illustration of the whole process is shown in Fig. 5.
There are three possible cases with respect to the length w:
Case 1: 1 ≤ w < R. We divide this case into 3 phases:

1. the client tunes into block Bi. It takes an average (u + x)/2 time to visit Bi;
2. the client waits (w − 1) complete blocks, which takes (w − 1)(u + x) time;
3. it finds the index directly pointing to dj in �i+w and download data. The

average waiting time is u + x/2.

The expected access latency of this case is shown below, where b denotes the
current block number, and d means the distance from b to the block it gets data:

E(AL|b = i, d = w) =
u + x

2
+ (w − 1)(u + x) + u +

x

2
= (

1
2

+ w)u + wx

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 343

Case 2: w = 0. The client tunes into Vi of block Bi, and finds the pointer to
required data item which is indeed in the following �i of the same block Bi. In
this case, it takes only aforementioned phases 1) and 3), so we have:

E(AL|b = i, d = 0) =
v

2
+ u − v +

x

2
= u − v

2
+

x

2

Case 3: w = R. Suppose the client tunes into block Bi, and the required data is
also in this block Bi. Unfortunately, the client already missed the control index
of this block when it tunes in, so it has to wait for the next control index in the
next block to continue searching, and then wait for Bi to be broadcast again in
the next bcast. In this case, the expected access latency becomes:

E(AL|b = i, d = R) =
u − v + x

2
+ (w − 1)(u + x) + u +

x

2
=

u − v

2
+ w(u + x)

According to the law of total expectation and the above three cases, we can get
the average access latency as in Thm. 1.

Theorem 2. The average tuning time for B+-Tree based distributed index is

E(TT)=
R∑

i=1

3ui−vi + (2+r)xi

r‖B‖ +
2L−l

2
+

|D|∑

i=1

sipi (2)

Proof. The tuning time of searching and downloading one data item comprises
the following phases:

Step I: The client tunes into broadcast channel, and searches for the right
control index. Since the client can start searching only from a control
index, we analyze this phase by three cases:
Case 1: The first visited bucket is a control index. Then the client
could follow the control table to find the right control index in
one more step, which is discussed in [3]. The probability of this
case is

∑R
i=1 vi/‖B‖, and the average tuning time of this case is

2
r

∑R
i=1 vi/‖B‖.

Case 2: The first visited bucket is a search index. The client needs to
wait for the next nearest control index, and follow its control table to
reach the target control index. This has a probability of

∑R
i=1(ui −

vi)/‖B‖, and average tuning time is 3
r

∑R
i=1(ui − vi)/‖B‖.

Case 3: The first visited bucket is a data bucket. The client also need
to wait for the next control index, and then go to the target control
index, with probability

∑R
i=1 xi/‖B‖. The average tuning time is (1+

2
r)

∑R
i=1 xi/‖B‖.

Step II: The client searches for the index that directly points to the required
data. The average number of visited index bucket in this step is
1
r

(
l
2 + (L − l)

)
= 1

r (L − l
2).

Step III: The client sleeps until the required data appears, and then tunes in
again to download data. The average downloading time is

∑|D|
i=1 sipi.

Combining above steps, we have the average tuning time as in Thm. 2.

344 J. Zhong et al.

In order to get the actual values of the average access latency and average tuning
time, we need to know the values of L, R, B, u, v, and x. The total level L of an
index tree is determined by the number of branches k of T and the size t of data
set D. Since the total number of pointers at the bottom level of T should be
equal to the number of data items, the number of leaf nodes on T should be at
least �t/k�, and the number of nodes at the second lowest level of T should be at
least ��t/k�/k�. In this way, we can calculate the size of each level inductively,
until we reach the root of T . We define N(L) as the set of nodes at the Lth level
of T . There is an algorithm in [3] describing how to compute L and N(L). With
known L and |N(L)|, we can get R = |N(l+1)|. What’s more, if T is a full k-ary
tree, there is a theorem as follows.

Theorem 3. If T is a full k-ary tree, then the total number of index buckets in
a bcast is k−kL

1−k + kl, where L = �logkt�, l < L, and k, l are fixed parameters.

The detailed proof of this theorem could be found in [3]. We can also get the
value of other variables after the construction of B.

5 Huffman-Tree Based Distributed Index

Huffman-tree index has been applied to the wireless broadcast environment ever
since the last decades. It is an efficient index technique because it takes into ac-
count the access probability of data items when constructing the Huffman-tree.
The popular data with higher probability reside closer to the root in Huffman-
tree, which reduces search time when traversing from the root. Considering flat
broadcast, we found that the distributed method could be extended to Huffman-
tree based broadcast, which is an innovative idea that has not been consid-
ered before. In this section, we will discuss the construction of Huffman-Tree
based Distributed Index Scheme (HTD) and perform a theoretical analysis on its
efficiency.

The structure of index bucket and data bucket in HTD is almost the same as in
BTD. The first step is to construct a k-ary Alphabetic Huffman-Tree following
the methods introduced in [14]. Here we give an example of the construction
process based on the data set and access frequency in Fig. 6. Note that if we
normalize the access frequency in Fig. 6, we will get the same data set as in
Fig. 1. The Alphabetic Huffman-Tree construction is shown in Fig. 7 and 8.

Stage 1: choose data nodes di, dj as candidates to be merged when

1. there are no leaves between them,
2. the sum of their frequencies is the minimum,
3. di and dj are the leftmost nodes among all candidates.

If the above conditions hold, we create a new index node d′i with frequency
equal to the sum of di’s and dj ’s frequencies, and replace di, dj with d′i in the
construction sequence. This stage produces a tree T0 without alphabetic ordering

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 345

of the data nodes, as in Fig. 7, where we record the frequencies of each index
node inside the circle as index key values.
Stage 2: record the level of each data node (leaf node) of T0, denoted as Li of
data di. The root node level is 1. From bottom to the root, rearrange pointers
such that for each level the leftmost two nodes have the same parent, and then
the next two, and so on. We can generate an alphabetic Huffman-Tree T in this
way, without changing the level of each node in T0, as shown in Fig. 8.

We could easily extend this algorithm to construct k-ary Huffman-Tree, by
merging at most k nodes in stage 1, and combining up to k nodes with the same
parent in stage 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 4 12 10 17 31 15 21 29 19 7 12 16 14 20

D ata Item K ey

Frequency

16

48

Fig. 6. An example Data Set of Huffman-Tree based Distributed Index

161 5

2 3

4

6

7 8

9

12 1311

1510

14

16

19

26

30

36 3840 50

57 65 78 98

122 176

298

Fig. 7. The first step of constructing T0

1 5

2 3

4

6

7 8

9

12 1311

1510

14

16

L= 6
l = 3

1
1B

1
2B 2

2B

3
3B 4

3B2
3B

3
4B 4

4B 5
4B

2
5B 3

5B

2
4B

1
3B

1
4B

1
5B

Replicated
Part

Non-
Replicated

Part

Fig. 8. The final Huffman-Tree T

After generating the alphabetic Huffman tree T , we cut T at level l, and
perform a distributed traversal as Sec. 4. The index nodes above l is still called
control index, and index nodes below l is search index. We append control tables
onto control index in the same way as Sec. 4.

Note that there are two major difference between Huffman tree and B+-tree,
that the position of leaf nodes and the subtree sizes below l are different. It is
possible that there might be data items above l in a Huffman tree, depending
on which level we choose for l, since data items are not restricted to reside at
bottom level of Huffman tree (they could also appear in higher level), which is a
major difference with B+-tree. Another difference is that sizes of subtrees below
l may vary a lot in Huffman tree, but for B+-tree each subtree has similar size.

The final broadcast sequence B generated in this example is illustrated in
Fig. 9; and the access protocol is described in Alg. 1. When searching in a con-
trol table, client firstly compares the key value of request data and that of the
first entry in control table; if request key is less than or equal to the first key,
it should wait until the root of next bcast; if request key is greater, the client
will go on to compare with the next entry in control table, and turn to doze mode

346 J. Zhong et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N, N

5, 2'

N, N

3, 4'

3, begin

5, 2'

N, N

8, 1'

Index bucket Data item, may contain several data buckets

5, begin

8, 1'

5, begin

6, 5'

6, begin

8, 1'

8, begin

N, N

8, begin

12, 3'

8, begin

9, 6'

9, begin

12, 3'

12, begin

N, N

12, begin

15, 7'

15, begin

N, N

1Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ 8Δ1V 2V 3V 4V 5V 6V 7V 8V

1B 2B 3B 4B 5B 6B 7B 8B

1[1]
1B 1[1]

2B 1[1]
3B 1

4B 1[2]
1B1[2]

2B1[2]
3B1

5B 2
4B 2[1]

3B 2[2]
3B 3

4B 2[1]
2B

1[2]
1B 1[2]

2B 1[2]
2B 1[2]

1B 1[2]
1B1[2]

3B

3[1]
3B 3[2]

3B 2[2]
2B4

4B 2
5B 4[1]

3B 4[2]
3B

4[2]
3B2[2]

2B 2[2]
2B2[2]

3B 3[2]
3B

5
4B 3

5B

Fig. 9. The broadcast sequence of Huffman-Tree based Index

for offset time if request key is not greater than the next key in control table;
otherwise, it will continue comparing with the rest entries of control table until
it finds such an entry, or go to default bucket (the next index) if not found.

Algorithm 1. Retrieve Data
Input: keyreq � key value of request data dreq

Output: dreq.
1: Access randomly onto broadcast channel;
2: B0 = current bucket;
3: if B0 is data bucket & B0.bId = (keyreq, 1, sreq) then
4: Download data dreq;
5: end if
6: if B0.bType �=control then
7: Doze B0.bOffset time till the next control index;
8: B0 = current bucket;
9: end if

10: Follow B0’s control table and go to the pointed bucket;
11: Download data dreq;

5.1 Performance Analysis of Huffman-Tree Distributed Index

In this section, we analyze the system performance of Huffman-Tree based dis-
tributed index by evaluating its expected access latency and tuning time.

First let’s consider access latency. Similar as BTD, all index and data buckets
are interleaved on one broadcast channel. The whole broadcast cycle is divided
into B1, · · · , BR blocks, where Bi = {Vi,dft(�i)}, for 1≤ i≤R. Note that here
Vi and �i are different with those in BTD ; Vi is still distributed path, but �i

may contain data. If there is no data node above l, Vi is the same as in BTD,
and �i is the whole subtree including data; however, if there is data node above
l, Vi represents distributed path excluding data nodes, and �i indicates all data
items following Vi above l. We use Pi to represent the access probability for
block Bi, while Pi can be derived by summing up the probabilities of all data
buckets that belong to Bi, i.e. Pi =

∑
j∈Bi

pj , for i = 1, · · · , R. Let vi denote
the length of Vi, and δi indicate the length of �i. Furthermore, an index bucket
may have different size compared to a data bucket, so we continue to use “r” as
the ratio of data bucket size to index bucket size.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 347

Theorem 4. If Huffman-Tree based distributed index and data are interleaved
on one broadcast channel, then the average access latency is

E(AL)=
1

‖B‖
R∑

i=1

(
R−2∑

w=1

(
vi + δi

2
+

i+w−1∑

j=i+1

(vj + δj) + vi+w+
δi+w

2
)P(i+w)%R(vi + δi)

+(
vi + δi

2
)Pivi +

R∑

i=1

(vi + δi)Piδi). (3)

Proof. Assume a client want to get data item dj . It first tunes into the broadcast
channel at block Bi. Then, it waits for another w blocks to reach the index which
contains the pointer to dj at Bi+w. Within Bi+w, the client waits for the first
data bucket of dj to be broadcast and begins to download, until it gets all the
data buckets of dj . There are three possibilities about the length of w:
Case 1: 1 ≤ w < R. We can divide this case into three phases: 1) the client
tunes into block Bi, and takes an average (vi + δi)/2 time in it; 2) it waits
through (w − 1) complete blocks, which takes

∑i+w−1
j=i+1 (vj + δj) time; and 3) it

finds the pointer to the datum in �i+w, and then download data, so the average
waiting time is vi+w + δi+w/2. The expected access latency of this case:

E(AL|b = i, d = w) =
vi + δi

2
+

i+w−1∑

j=i+1

(vj + δj) + vi+w +
δi+w

2
(4)

Case 2: w = 0. The client tunes into Vi of block Bi, and the pointer to required
data is indeed in the following bucket of the same block Bi. In this case, it only
contains aforementioned phases 1) and 3) of the first case, so the expected access
latency becomes:

E(AL|b = i, d = 0) =
vi

2
+

δi

2
=

vi + δi

2
(5)

Case 3: w = R. Suppose the client tunes into block Bi, and the required data is
in the same block Bi. Unfortunately, the client already missed the index buckets,
so it has to wait for the next available index in the next block to continue
searching, and then wait for Bi to be broadcast again in the next broadcast
cycle. In this case, the expected access latency is:

E(AL|b = i, d = R) =
δi

2
+

i+w−1∑

j=i+1

(vj + δj) + vi +
δi

2
=

R∑

i=1

(vi + δi) (6)

Combining equation (4), (5), (6), using law of total expectation, we can get the
average access latency as in Thm. 4.

Theorem 5. The average tuning time for alphabetic Huffman-Tree based dis-
tributed index scheme is

E(TT) = 2
∑ R

i=1 vi+(2+r)|D|+3
∑ R

i=1 δi

r‖B‖ +
∑|D|

i=1(
l
2r + 1

r (Li − l) + si)pi (7)

Proof. The tuning time of searching and downloading one data item comprises
the following steps:

348 J. Zhong et al.

Step I: The client tunes into broadcast channel, and search for the right in-
dex, following which it can get the required data on that same block.
Consider these three cases:
Case 1: The client first tunes into a control index. Then the client could
follow the control table to find the right control index in one more step,
which is discussed in [3]. The probability of this case is

∑R
i=1 vi/‖B‖,

and the average tuning time of this case is 2
r

∑R
i=1 vi/‖B‖.

Case 2: The first visited bucket is a data bucket. The client need to wait
for the next nearest control index, and then go to the target control
index, with a probability of |D|/‖B‖. Thus, the average tuning time of
this case is (1 + 2

r)|D|/‖B‖.
Case 3: The first visited bucket is a search index. The client also need
to wait for the next nearest control index, and follow its control table to
reach the target control index. This has a probability of

∑R
i=1 δi/‖B‖,

and average tuning time is 3
r

∑R
i=1 δi/‖B‖.

Step II: Next, the client searches for the pointer that directly points to the
required data. Then it sleeps until the required data appears, and tunes
in again to download data. The average time of this step is

∑|D|
i=1(

l
2r +

1
r (Li − l) + si)pi, where Li is the level of data di in the Huffman-Tree.

Finally, summarizing the above steps, we can get the average tuning time of
Huffman-Tree based distributed index as in Thm. 5.

6 Simulation

In this section, we use simulation results to evaluate the performance of HTD
and BTD. Our system is implemented using Java 1.6.0 on an Intel(R) Xeon(R)
E5520 computer with 6GB memory, and Windows 7 v6.1 operating system.

6.1 Simulation Settings

We simulate a base station with single broadcast channel, broadcasting a
database with 10,000 data items [20], each of which has different sizes from
1KB to 4KB, and multiple clients requesting various sets of data items. The ac-
cess probability of each data item satisfies the zipf distribution [13], a model for
non-uniform access patterns [10,18]. Each data bucket is set of size 1KB, and we
could calculate the size of each index bucket as [3] to be 0.1KB. Normally, in real
applications, the ratio of index bucket size over data bucket size is 1

r = 0.1, but
other papers never discuss about this. They assume index bucket is of the same
size as data bucket, which is not accurate. Therefore, in our simulation we set
up r = 10, which is much closer to the reality scenario. Moreover, for each group
of experiments, we generate 10,000 requests based on data access probabilities,
in order to calculate the average access latency (AAL) and average tuning time
(ATT) during data retrieval more accurately.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 349

6.2 Simulation Results

When the size of the request set is 10,000, the ratio of index bucket size over
data bucket size 1

r = 0.1, we vary the size of database to compare AAL and ATT
of HTD and BTD. From Fig. 10 we can see that HTD has much shorter average
access latency than BTD, while both HTD ’s and BTD ’s average access latencies
gradually increases as the database size increases. Note that the measurement
of Y-axis denotes the unit time to read one data bucket. Thus, we can claim
that HTD reduces the average response time of request retrievals. Moreover, as
the database size increasing, the average access latency gap between HTD and
BTD is growing larger, and the advantage of HTD becomes more obvious. From
Fig. 11 we can see that no matter how database size increased, HTD always
needs less average tuning time than BTD during retrieval, which means HTD is
more energy-efficient. As the database size increasing, the average tuning times
gap between HTD and BTD is growing larger, which implies that the energy
advantage of HTD is getting more obvious.

Next, we evaluate the broadcast cycle length of HTD and BTD. Due to differ-
ent tree structures, these two approaches have different Bcast length after index
and data allocation, although the distributed traversal methods are similar. We
use ‖B‖ to represent the length of one Bcast on broadcast channel. We consider
the bucket size ratio r when analyzing the length of Bcast. As in Fig. 12, the
Bcast of BTD is always longer than that of HTD. The reason is that BTD has
much more index nodes than HTD due to its tree structure, even when they
use the same data set and same cutting level. Therefore, using HTD for data
broadcast will reduce the total length of data stream on broadcast channel.

Fig. 10. AAL w. r. t. |D| Fig. 11. ATT w. r. t. |D| Fig. 12. ‖B‖ w. r. t. |D|

7 Conclusion

In conclusion, we are the first work to propose a promising strategy under wire-
less data broadcast environment, which is a novel Huffman-Tree index scheme
combined with distributed index strategy. Specifically, we formally define an
uniform communication environment, redesign and enhance B+-tree distributed
index (BTD) structure and broadcasting scheme, propose a novel Huffman-tree
based distributed index (HTD), theoretically analyze each scheme under the same
environment and same criteria, and then evaluate the performance of them by

350 J. Zhong et al.

experiments. Simulation results show two major advantages of HTD : (1) it is
more energy efficient, and (2) it reduces response time significantly. Therefore,
HTD outperforms BTD in all major criteria.

All in all, our contribution includes three aspects. Firstly, we construct the
uniform communication environment for wireless data broadcast system, and
provide structured design of distributed index and Huffman-tree index. We fol-
low the latest and most efficient construction for both index technologies, and re-
design/modify some part of them such that they could be applied in the uniform
communication environment. Next, we provide a general theoretical analysis to
evaluate the performance of each index. Such analysis can be applied easily to
majority indices commonly used in data broadcast. It can be a standard to eval-
uate the efficiency of an index technique. Thirdly, we simulate data broadcast
system with a large number of numerical experiments, using the same group of
sample data, such that the output will be reliable. Simulation results reveals
that Huffman-tree distributed index is more power efficient and also responses
much faster. Our future work includes developing more efficient index schemes
for wireless data broadcast and provide more theoretical analysis on them.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data manage-
ment for asymmetric communication environments, pp. 199–210 (1995)

2. Chen, M., Yu, P., Wu, K.: Indexed Sequential Data Broadcasting in Wireless Mobile
Computing. In: ICDCS 1997 (1997)

3. Gao, X., Shi, Y., Zhong, J., Zhang, X., Wu, W.: SAMBox: A Smart Asynchronous
Multi-Channel Blackbox for B+-Tree based Data Broadcast System under Wireless
Communication Environment, Submitted to Information Sciences (2010)

4. Hsu, C., Lee, G., Chen, A.: Index And Data Allocation On Multiple Broadcast
Channels Considering Data Access Frequencies. In: MDM 2002, pp. 87–93 (2002)

5. Hu, Q., Lee, W., Lee, D.: A Hybrid Index Technique for Power Efficient Data
Broadcast. Distrib. Parallel Dat. 9(2), 151–177 (2004)

6. Hu, T., Tucker, A.: Optimal Computer Search Trees and Variable-length Alpha-
betic Codes. SIAM J. Appl. Math. 21(4), 514–532 (1971)

7. Hurson, A., Muñoz-Avila, A., Orchowski, N., Shirazi, B., Jiao, Y.: Power-Aware
Data Retrieval Protocols for Indexed Broadcast Parallel Channels. Pervasive and
Mobile Computing 2(1), 85–107 (2006)

8. Imielinski, T., Viswanathan, S., Badrinath, B.: Power Efficient Filtering of Data
on Air. In: Jarke, M., Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779,
pp. 245–258. Springer, Heidelberg (1994)

9. Imielinski, T., Viswanathan, S., Badrinath, B.: Data on Air: Organization and
Access. IEEE TKDE 9(3) (1997)

10. Jung, S., Lee, B., Pramanik, S.: A Tree-Structured Index Allocation Method
with Replication over Multiple Broadcast Channels in Wireless Environment.
TKDE 17(3) (2005)

11. Lee, W., Zheng, B.: A Fully Distributed Spatial Index for Wireless Data Broadcast.
In: ICDE 2005, pp. 417–418 (2005)

12. Lee, W., Lee, D.: Using signature techniques for information filtering in wireless
and mobile environments. Distrib. Parallel Dat. 4(3), 205–227 (1996)

13. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge (1999)

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 351

14. Shivakumar, N., Venkatasubramanian, S.: Energy-Efficient Indexing For Informa-
tion Dissemination In Wireless Systems. ACM, Journal of Wireless and Nomadic
Application (1996)

15. Vijayalakshmi, M., Kannan, A.: A Hashing Scheme for Multi-channel Wireless
Broadcast. Journal of Computing and Information Technology-CIT 16 (2008)

16. Vaidya, N., Hameed, S.: Scheduling data broadcast in asymmetric communication
environments. Wireless Networks 5, 171–182 (1996)

17. Vlajic, N., Charalambous, C., Makrakis, D.: Wireless data broadcast in systems of
hierarchical cellular organization. In: ICC 2003, vol. 3, pp. 1863–1869 (2003)

18. Wang, S., Chen, H.: Tmbt: An Efficient Index Allocation Method for Multi-Channel
Data Broadcast. In: AINAW 2007 (2007)

19. Xu, J., Lee, W., Tang, X., Gao, Q., Li, S.: An Error-Resilient and Tunable Dis-
tributed Indexing Scheme for Wireless Data Broadcast. IEEE TKDE 18(3), 392–
404 (2006)

20. Yee, W., Navathe, S.: Efficient data access to multi-channel broadcast programs.
In: CIKM 2003, pp. 153–160 (2003)

21. Yang, X., Bouguettaya, A.: Broadcast-based data access in wireless environments.
In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 553–571. Springer, Heidelberg (2002)

22. Yao, Y., Tang, X., Lim, E., Sun, A.: An Energy-Efficient and Access Latency Op-
timized Indexing Scheme for Wireless Data Broadcast. IEEE TKDE 18(8), 1111–
1124 (2006)

23. Zheng, B., Lee, W., Liu, P., Lee, D., Ding, X.: Tuning On-Air Signatures for Bal-
ancing Performance and Confidentiality. IEEE TKDE 21(12), 1783–1797 (2009)

	Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval in Wireless Data Broadcast
	Introduction
	Related Works
	System Symbols and Bucket Design
	System Symbols
	Bucket and Pointer Design

	B+-Tree Based Distributed Index
	Performance Analysis of B+-Tree Distributed Index

	Huffman-Tree Based Distributed Index
	Performance Analysis of Huffman-Tree Distributed Index

	Simulation
	Simulation Settings
	Simulation Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

